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A generalization of the well-known Levins’ model of metapopulations is studied.
The generalization consists of (i) the introduction of immigration from a mainland,
and (ii) assuming the dynamics is stochastic, rather than deterministic. A master
equation, for the probability thatn of the patches are occupied, is derived and the
stationary probabilityPs(n), together with the mean and higher moments in the
stationary state, determined. The time-dependence of the probability distribution
is also studied: through a Gaussian approximation for generaln when the bound-
ary atn = 0 has little effect, and by calculatingP(0, t), the probability that no
patches are occupied at timet , by using a linearization procedure. These analytic
calculations are supplemented by carrying out numerical solutions of the master
equation and simulations of the stochastic process. The various approaches are in
very good agreement with each other. This allows us to use the forms forPs(0) and
P(0, t) in the linearization approximation as a basis for calculating the mean time
for a metapopulation to become extinct. We give an analytical expression for the
mean time to extinction derived within a mean field approach. We devise a simple
method to apply our mean field approach even to complex patch networks in real-
istic model metapopulations. After studying two spatially extended versions of this
nonspatial metapopulation model—a lattice metapopulation model and a spatially
realistic model—we conclude that our analytical formula for the mean extinction
time is generally applicable to those metapopulations which are really endangered,
where extinction dynamics dominates over local colonization processes. The time
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evolution and, in particular, the scope of our analytical results, are studied by com-
paring these different models with the analytical approach for various values of the
parameters: the rates of immigration from the mainland, the rates of colonization
and extinction, and the number of patches making up the metapopulation.

c© 2002 Published by Elsevier Science Ltd on behalf of Society for Mathematical
Biology.

1. INTRODUCTION

Worldwide anthropogenic activities have been responsible for huge changes on
the natural environment for millennia. Currently, change in land use is one of the
most important components of global climate change (Vitousek, 1994). As a con-
sequence, natural wild areas are lost and fragmented. Ever smaller fragments of
natural habitat are becoming ever more isolated from each other. Therefore, it is
reasonable to assume that ever more species are living as fragmented local popula-
tions connected by migration. This network of patches inhabited by local popula-
tions is called a metapopulation (Levins, 1969, 1970). Cumulative habitat loss and
habitat fragmentation has contributed to increase the extinction risk of endangered
species. Furthermore, research to date strongly supports the idea that ecosystem
functioning is sensitive to biodiversity losses. Plant production, land use, nutrient
leaching, and ecosystem reconstruction and stability can all be altered by reduc-
tions in biodiversity (Naeemet al., 1999). Thus, it is a general environmental
concern to develop analytical tools to predict the dynamics of not only metapopula-
tions, but also ensembles of metapopulations, i.e., metacommunities. In particular,
in this paper, a metapopulation stochastic model that considers a mother mainland
population feeding a network ofN migration-connected patches is studied. Our
aim is to understand how the number of patches affects the regional persistence of
the species under different assumptions about how extinction–colonization dynam-
ics takes place.

Harrison(1991) discusses the relevance of the mainland–island metapopulation
(MIM) structure in the context of the real metapopulations. Extreme differences in
patch sizes make some terrestrial metapopulations very similar in their dynamics
to true mainland and islands.Hanski (1999) calls attention again to the impor-
tance of this metapopulation structure, and points out that its multispecies version,
assuming independent dynamics in the species, is the basis of the dynamic theory
of island biogeography ofMacArthur and Wilson(1967).

Levins(1969, 1970) introduced an important set of metapopulation models where
the fraction of occupied patches results from a dynamic equilibrium between two
processes: patch colonization and patch extinction.Gotelli and Kelley(1993)
review this topic and classify colonization–extinction Levins-like models into four
particular classes. None of these matches the deterministic version of the MIM
model we study here. The model in its deterministic form was first written down
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by Hanski(1999) and has the following form

dp

dt
= (m + cp)(1 − p)− ep. (1)

Here p(t) is the fraction of occupied patches at timet and the constantsm, c
ande are the rates of immigration from the mainland, colonization and extinction,
respectively. If the immigration from the mainland is absent (m = 0), then the
classical Levins’ model is recovered.

In this mean field approximation local colonization is a metapopulation process
that depends on regional occurrence and extinction is independent of regional
occurrence. The immigration from the mainland is introduced as apropagule
rain (Gotelli and Kelley, 1993). Since metapopulations are not completely iso-
lated, some degree of immigration from the biogeographical region that feeds the
metapopulation is a very realistic assumption. The arrival of propagules from out-
side establishes a connection between the internal dynamics of the system under
study and the rest of the ecological world. This connection is of paramount impor-
tance in the establishment of Hubbell’s extension of the dynamic theory of island
biogeography (Hubbell, 2001). In particular, within a metapopulation context,
not only is this feature very reasonable in itself, but it also increases the mathe-
matical tractability of the stochastic model introduced here. We take advantage
of this to find the probability of havingn patches occupied in the steady state,
the temporal evolution of that probability, and new analytical expressions for the
expected lifetime of the metapopulation as a whole in terms of the number of avail-
able patches, the degree of isolation of the metapopulation, and the extinction–
colonization parameters.

We note for future reference that the solution for the temporal evolution of the
fraction of occupied patchesp(t) of the deterministic model described in (1) can
be easily found to be

p(t) =
1

2

(
c − e− m

c

)
+ a

1 + Ke−2act

1 − Ke−2act
, (2)

whereK is a constant depending on initial condition anda is given by

a =
1

2c

√
(c − e− m)2 + 4mc. (3)

The classical Levins’ model describes the temporal evolution of the fraction of
local populations that are inhabited by the species under study. The assumptions
this model makes can be summarized as follows:

• All patches have the same area.
• All patches are identically connected by migration.
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• Local dynamics within a patch is ignored, as is the effect of local dynamics
on migration.

• All populations experience an equal extinction risk independently.

• There are an infinite number of patches.

In comparison to the deterministic Levins’ model, the stochastic approach adop-
ted here introduces two new features. First, it gives a way to relax the last assump-
tion, and so to study the effect of taking afinite number of patches. As a result,
such an approach allows one to take into account the intrinsic stochastic extinction–
colonization dynamics, i.e., the consequences of demographic stochasticity on
metapopulation dynamics. Second, as previously stated, it allows one to con-
sider some degree of immigration from a regional pool of individuals feeding the
metapopulation. The stochastic Levins’ model, as opposed to the stochastic ver-
sion of them 6= 0 model (1), has been previously studied (Gurney and Nisbet,
1978). In that paper the problem of a population persisting in a patchy environment
where extinction and colonization occur was examined. Using a ‘zero-correlation
discrete-state’ approach—which is equivalent to our mean field approximation—
the patterns of population fluctuations were explained, and mean times to global
extinction were estimated.

The stochastic counterpart of the model described in equation (1) is presented in
Section2. In Section3, we find the stationary probability distributionPs(n) analyt-
ically, and also find expressions for the mean and variance of the number of occu-
pied patches. The regional persistence of the metapopulation is a temporal process.
It is, then, extremely important to address the problem of how the probability dis-
tribution, P(n, t), evolves in time depending on the parameters. In Section4 we
determine this function whenN is large, by showing how it moves according to
the deterministic equation (1), as well as broadening ast increases. When the tail
of this distribution reaches then = 0 boundary, the approach of Section4—at least
within the Gaussian approximation adopted there—is no longer valid. Therefore,
in Section5 we investigate the probability that no patches are occupied,P(0, t)
(i.e., that metapopulation or regional extinction occurs), for times which are large
enough that it is nonzero. Throughout we give comparisons between the analyt-
ical approximations, the direct numerical integration of the master equation and
numerical stochastic realizations of the model. The final aim of the temporal anal-
ysis is to compute the expected time to extinction. However, real metapopulations
are not composed of equally connected patches. Therefore, in Section6, our ana-
lytical results are compared to computer simulations of the results obtained from
two spatially extended models for metapopulation dynamics: those obtained from
a spatially realistic metapopulation (SRM) model and from a lattice metapopula-
tion model, where internal colonization is modeled locally. There are three appen-
dices. In AppendixA, the probability distribution function and the moments in
the stationary state are obtained in the limit whenN is large. In the second, the
evaluation of the integral, appearing in the formula for the mean time to extinction
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of the metapopulation, is given. In the third, the algorithm used to carry out the
numerical simulations reported throughout the paper is described in detail.

2. THE STOCHASTIC M ODEL

ConsiderN populations linked by migration together with a source of external
immigration, themainland, feeding available patches with immigrants. Suppose
also that extinction acts independently in all occupied patches. Then, assuming
thatdt is so small that only one event can occur during that time interval, one has
the following possible events and their probabilities:

• Probability of having a colonization event in a timedt

cn

(
1 −

n

N

)
dt. (4)

• Probability of having an extinction event in a timedt

endt. (5)

• Probability of an external immigration event from themainlandin a timedt

(N − n)mdt. (6)

Putting all of these effects together, we obtain the one-step transition probabilities
gn ≡ W(n + 1 | n) andrn ≡ W(n − 1 | n) as

gn = cn

(
1 −

n

N

)
+ m(N − n), (7)

and

rn = en. (8)

We can now write down a master equation describing this one-step stochastic
process (van Kampen, 1981; Gardiner, 1985). If P(n, t) is the probability ofn of
the patches being occupied at timet , the master equation takes the form

d P(n, t)

dt
= rn+1P(n + 1, t)+ gn−1P(n − 1, t)− (rn + gn)P(n, t). (9)

Equation (9) is only valid for values ofn not on the boundary (i.e., forn 6= 0
andn 6= N); for these values special equations have to be written reflecting the
fact that no transitions out of the region[0, N] are followed. However, from (7)
and (8) we see thatgN = 0 andr0 = 0, and if additionally we definer N+1 = 0
andg−1 = 0, then (9) holds for alln = 0,1, . . . , N. To completely specify the
system we also need to give an initial condition, which will typically have the form
P(n,0) = δn,n0 for some nonnegative integern0. This completes the formulation
of the stochastic process. We now move on to the analysis of this problem, starting
with the properties of the stationary state.
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3. STATIONARY STATE

We begin our investigation by determining the stationary probability distribution,
Ps(n), of the model. We will then show that〈n2

〉s, 〈n3
〉s, and all of the higher

moments in the stationary state, can be expressed in terms of the mean number
of patches in the stationary state,〈n〉s. We obtain an expression for the mean
which is valid in the limit where the total number of patches,N, is large, but show
numerically that in fact this result holds down to even small values ofN.

The stationary state is defined as the state in whichP(n, t) is time independent.
Settingd P(n)/dt = 0 in (9), one obtains

rn+1Ps(n + 1)− gn Ps(n) = rn Ps(n)− gn−1Ps(n − 1). (10)

This is true for alln, which implies thatrn Ps(n) − gn−1Ps(n − 1) = J, whereJ
is a constant. Applying the boundary condition atn = 0, we find thatJ = 0 and
therefore

rn Ps(n) = gn−1Ps(n − 1); n = 0,1, . . . , N. (11)

If e 6= 0, thenrn 6= 0 for all n such that 0< n ≤ N, and therefore

Ps(n) =
gn−1gn−2 . . . g0

rnrn−1 . . . r1
Ps(0); n = 1, . . . , N. (12)

The constantPs(0) can be determined from the normalization condition

N∑
n=0

Ps(n)= Ps(0)+

∑
n>0

Ps(n) = 1; (13)

(Ps(0))
−1

= 1 +

N∑
n=1

gn−1gn−2 . . . g0

rnrn−1 . . . r1
. (14)

The transition probabilities (7) may be written in the more compact form

gn = eα(n + β)(N − n), (15)

where

α =
1

N

c

e
and β = N

m

c
. (16)

Substituting (15) together withrn = en, into (12) and (14) gives

Ps(n) =

(
N

n

)
0(n + β)

0(β)
αn Ps(0), (17)
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Figure 1. Probability distribution function in the stationary state for different values of
external immigration,m, colonization,c, extinction, e, and also for two system sizes.
The functionPS(n) is computed numerically using a suitable modification of the Tridag
algorithm (Presset al., 1992).

where

(Ps(0))
−1

=

N∑
n=0

(
N

n

)
0(n + β)

0(β)
αn. (18)

Some plots of the stationary distributionPs(n) are shown in Fig.1. The Gaussian
form of the curves is apparent as long as immigration from the mainland is high
enough. The probability of having zero patches occupied, which can be called
regional extinctionof the metapopulation, increases as the external immigration
decreases.

We would also wish to obtain expressions for the moments of this distribution.
To do this, let us first derive equations for the time evolution of the moments.
Multiplying (9) by nm, m = 1,2, . . . and summing over alln gives

d

dt
〈nm

〉 = 〈[(n + 1)m − nm
]gn〉 + 〈[(n − 1)m − nm

]rn〉, m = 1,2, . . . , (19)
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where we have used the forms ofgn andrn at the boundaries. In the stationary state
the left-hand side (l.h.s.) of (19) is zero, which gives form = 1 andm = 2:

0 = eαβN + e[α(N − β)− 1]〈n〉s − eα〈n2
〉s (20)

0 = eαβN + e[α(N − β)+ 2αβN + 1]〈n〉s

+ eα[2(N − β)− 1]〈n2
〉s − 2eα〈n3

〉s, (21)

using the explicit forms forgn andrn. It is clear that the stationary form of (19) for
a given value ofm will involve 〈n〉s, . . . , 〈nm+1

〉s. Therefore, if an explicit form for
〈n〉s is known, all moments can in principle be found, and those for small values
of m can be found quite easily. For example,

〈n2
〉s = βN +

[
(N − β)− α−1

]
〈n〉s. (22)

A formal expression for the mean ofn in the stationary state can be easily
obtained from (17). It is given by

〈n〉s =

N∑
n=0

nPs(n) =

N∑
n=0

(
N

n

)
n0(n + β)

0(β)
αn Ps(0). (23)

Usingn0(n + β) = 0(n + β + 1)− β0(n + β) together with (18), we find

〈n〉s =
0(β + 1)

0(β)

N∑
n=0

(
N

n

)
0(n + β + 1)

0(β + 1)
αn Ps(0)− β

= β

{
N∑

n=0

(
N

n

)
0(n + β + 1)

0(β + 1)
αn Ps(0)− 1

}
. (24)

The sums in (18) and (24) are of the same type and may be expressed in terms
of special functions—generalized Laguerre polynomials—as discussed in Appen-
dix A, but this is not especially helpful in understanding the nature of the stationary
state as a function of the parameters of the model. Fortunately, approximate forms
for N large are not difficult to derive. For example, it is shown in AppendixA that
the first term in the curly brackets in (24) equalsεy∗/µ for largeN (andµN � 1)
wherey∗ is the positive root ofd f/dy = 0 and

f (y) = µ ln y + ln(1 + y)− εy, ε ≡
1

αN
=

e

c
, µ ≡

β

N
=

m

c
. (25)

Solving for y∗ we obtain

〈n〉s

N
=

1

2

{
(1 − µ− ε)+

√
(1 + µ− ε)2 + 4µε

}[
1 + O

(
1

N

)]
. (26)
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The order 1/N corrections to (26) are more complicated, but can still be expre-
ssed in terms of the quantities defined in (25):

〈n〉s

N
= µ

{
εy∗

µ
− 1

}
+

ε

2N

{
2

y∗ f (2)(y∗)
+

f (3)(y∗)

[ f (2)(y∗)]2

}
+ O

(
1

N2

)
, (27)

where f (k)(y) is thekth derivative of f (y).
In the case thatN is large, but thatµ is so small that the conditionµN � 1 is

no longer true, we have to proceed in a slightly different manner. The analogous
result to (27) can be found from (24), (A.8) and (A.15), and is given by

〈n〉s

N
= (1 − ε − µ)+

ε

2N

{
−2(β − 1)

y∗ f̃ (2)(y∗)
+

f̃ (3)(y∗)

[ f̃ (2)(y∗)]2

}
+ O

(
1

N2

)
, (28)

wherey∗ is now the positive root ofd f̃ /dy = 0 and wheref̃ (y) = ln(1+ y)−εy.
The constantβ is given byβ = µN. Sincey∗ is positive only ifε < 1, this result
only holds ife< c.

As can be seen in Fig.2, the second-order approximation for the mean agrees
well with the exact mean values (l.h.s. plots). The approximation breaks down
only for low metapopulation sizes and values ofε around 1. It can be seen that the
approximation works even better than expected, i.e., when the requirements thatN
or µN are large, required for the derivation, are not fulfilled. The approximation
for the variance obtained using the exact result (22) is not as good as for the mean,
because this equation uses the approximate value for the mean in order to estimate
the variance.

In summary, the largeN approximation is good at largeN, and in many cases
remains reasonable down to quite small values ofN. As mentioned in the introduc-
tion, the stochastic approach which we have adopted allows us to study the effect
of taking N to be finite. If we assume thatµ (or equivalentlym) is nonzero, then
〈n〉s/N [given by (26)] approachesp∗

≡ p(∞) [the fraction of occupied sites in
the deterministic model in the steady state, given by (2) and (3)] asN → ∞, as we
would expect. The corrections to this deterministic result, as represented by (26)
and (27), are of the form of a power series in 1/N. These conclusions are only true
if m is not zero: asm → 0, (26) and (27) cease to apply. This is because to derive
the latter two equations we assumed thatN andµN were large. The latter condi-
tion will typically be violated whenm → 0 and in these cases (28) will instead be
applicable. TheN → ∞ limit of equation (28) for the average number of the frac-
tion of occupied patches in the steady state is now equal to the equilibrium value
of the classical Levins’ model,p∗

= 1− ε (them = 0 version of the deterministic
model). The nature of the corrections in this case depends on howµN behaves in
the double limitµ → 0 andN → ∞.

These comments show up the subtlety of them → 0 limit. If we simply set
m = 0 in the transition probability (7), we see thatg0 = 0 and from (12) we see that
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Figure 2. These plots show comparisons between, on the one hand, the largeN approxima-
tion for the mean and the variance of the number of occupied patches for different values of
connectivity,c, and metapopulation size,N, and, on the other, the same values computed
directly from the stationary probability distribution,Ps(n), which has been found numeri-
cally by means of the Tridag algorithm (Presset al., 1992). In the six upper plots,(ε < 1),
the second-order approximation is calculated using equation (28). In the four lower plots
(ε > 1), the second-order approximation is calculated using equation (27). In the variance
plots, we have only used the second-order approximation, so only two curves are present
in these plots.

Ps(n) = 0 for n > 0. ThereforePs(0) = 1, which reflects the fact that when there
is no immigration, regional extinction is certain in a finite population. However,
if a long time elapses before the probability of extinction becomes nonnegligible,
there will be a quasi-equilibrium probability distribution, which can also be used
to compute different quantities of interest (Renshaw, 1991; Ball and Nasell, 1994;
Nasell, 1996). On the other hand ifm → 0 andN → ∞—so that the population
is now formally infinite—extinction is no longer certain, as described earlier. It
is also interesting to note that (28) only holds if ε < 1 (a consequence of the
breakdown of the steepest descent method described in AppendixA whenε > 1).
Again this is not too surprising given the nonanalytic behavior of the deterministic
(N → ∞) model forµ = 0 ande> c.

In this section we have seen how the largeN limit—apart from the singular
regimeµ → 0 andε > 1—when applied to the mean and variance, gives the
deterministic model results to leading order and allows us the calculate corrections
to this result. We will now show that the largeN method may also be applied to



Stochastic Metapopulation Dynamics 923

the entire evolution equation (9), giving (1) to leading order, and other equations
giving the finiteN corrections.

4. TIME DEPENDENCE

Having investigated the properties of the stationary state in the last section, we
now move on to the study of the time evolution of the system. The master equa-
tion (9) has transition probabilitiesgn which are nonlinear inn, so that an exact
solution for the time-dependent behavior is not possible. However, since very
often in the problem of interestN is large, the possibility of performing a large-N
analysis once again suggests itself. In this section we will describe the applica-
tion of such an analysis—specifically van Kampen’s large-N method (van Kam-
pen, 1981)—to our model. This method has a number of attractive features, for
instance, the macroscopic (i.e., deterministic) equation emerges naturally from the
stochastic equation as a leading order effect inN, with the next to leading order
giving the Gaussian broadening ofP(n, t) about this average motion. The method
is clearly presented byvan Kampen(1981), so we will only give a brief outline of
the general idea and stress the application to the model of interest in this paper.

If we take the initial condition on (9) to beP(n,0) = δn,n0, we would expect, at
early times at least,P(n, t) to have a sharp peak at some value ofn (of orderN),
with a width of orderN · N−1/2

= N1/2. It is therefore, natural to transform from
the stochastic variablen to the stochastic variableξ by writing

n = Nφ(t)+ N1/2ξ (29)

whereφ(t) is some unknown macroscopic function which will have to be chosen to
follow the peak in time. A new probability distribution5 is defined byP(n, t) =

5(ξ, t), which implies that

Ṗ =
∂5

∂t
− N1/2dφ

dt

∂5

∂ξ
. (30)

The master equation (9) may be written

Ṗn = (E − 1)rn Pn +
(
E−1

− 1
)
gn Pn, (31)

whereE(E−1) is an operator which changesn into n + 1(n − 1), e.g., if fn is an
arbitrary function ofn, thenE fn = fn+1. In terms ofξ :

E±1
= 1 ± N−1/2 ∂

∂ξ
+

1

2!
N−1 ∂

2

∂ξ2
+ · · · . (32)
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Using (29)–(32) the original master equation forP(n, t) can be rewritten as an
equation for5(ξ, t). A hierarchy of equations can now be derived by identifying
terms order by order in powers ofN−1/2. The first two of these are:

dφ

dt
= α1,0(φ) (33)

and
∂5

∂t
= −α′

1,0(φ)
∂

∂ξ
(ξ5)+

1

2
α2,0(φ)

∂25

∂ξ2
, (34)

where

α1,0(φ)= cφ(1 − φ)− eφ + m(1 − φ)

α2,0(φ)= cφ(1 − φ)+ eφ + m(1 − φ). (35)

The first equation, (33), is the macroscopic equation forφ(t) and is identical to the
deterministic equation (1). Its solution is therefore given by (2) and (3) with p(t)
replaced byφ(t) and whereK is an arbitrary constant. This shows that the peak of
the distribution moves according to the deterministic dynamics, as we might have
expected.

Initially we ask thatξ(0) = 0, which means thatφ(0) = n(0)/N = n0/N. We
can use this result to determine the constantK . Substituting back into (2) gives

φ(t) =
1

2

(
c − e− m

c

)
+ a

Z + tanh(act)

1 + Z tanh(act)
, (36)

where

Z ≡
1

a

[
n0

N
−

c − e− m

2c

]
. (37)

The second equation, (34), is a linear Fokker–Planck equation whose coefficients
depend on time throughφ given by (36). It is straightforward to show that the
solution to this equation is a Gaussian and so it is only necessary to determine〈ξ〉t

and〈ξ2
〉t to completely characterize5(ξ, t). By multiplying (34) by ξ andξ2 and

using integration by parts, one finds (van Kampen, 1981)

∂t〈ξ〉t = α′

1,0(φ)〈ξ〉t and

∂t〈ξ
2
〉t = 2α′

1,0(φ)〈ξ
2
〉t + α2,0(φ). (38)

In our caseα′

1,0(φ) = (c − e− m)− 2cφ, and so

〈ξ〉t = 〈ξ〉0 exp

(
−2ac

∫ t

0

1 + Ke−2act

1 − Ke−2act
dt

)
= 0, (39)
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since we have already assumed that〈ξ〉0 = 0. A straightforward, but tedious,
calculation now gives

〈ξ2
〉t = {[λ+ 2ae][1 − e−4act

] − 8K [λ+ ae+ a2c][1 − e−2act
]e−2act

+ 4acK2
[8a2c + 6λ]te−4act

− 8K 3
[λ− ae+ a2c][1 − e−2act

]e−4act

+ K 4
[λ− 2ae][1 − e−4act

]e−4act
}/4ac(1 − Ke−2act)4, (40)

whereλ = e(c − e− m)/c andK is the constant appearing in (2):

K =
Z − 1

Z + 1
. (41)

Numerical results (Fig.3) show that, eventually, the probability distribution devi-
ates from a Gaussian form. While it is true that one could in principle calculate
these non-Gaussian effects using van Kampen’s approach (by taking higher order
terms inN−1/2 into account), the method gets increasingly cumbersome. There-
fore, in the next section, we adopt a totally different approach to the calculation of
time-dependence, which will focus onP(0, t)—the quantity we need to determine
if we wish to understand the predictions of the model relating to extinction of the
metapopulation.

5. MEAN T IME TO EXTINCTION

In this section we will develop an approximate scheme to calculateP(0, t), the
probability that no patches are occupied at timet , and compare the results with
those obtained numerically. We will also re-examine the behavior of limt→∞

P(0, t) = Ps(0), which was already obtained in Section3 and in AppendixA
within the largeN approximation, as a function of the parameters of the model.

From the lower set of graphs in Fig.3 we see that the Gaussian approximation of
Section4 is likely to break down when, ast increases, the left-hand tail ofP(n, t)
reaches then = 0 boundary. At this time,P(0, t) begins to become significantly
different from zero. However, it is also apparent from Fig.3 that in this case the
only values ofn for which P(n, t) will be significantly different from zero will be
small values ofn, specifically those which satisfyn � N. When this condition
holds,gn given by (15) may be approximated by

gn = eαN(n + β) = c(n + β). (42)

Now both gn and rn = en are linear inn and the master equation (9) defines
a linear one-step process. This class of problems can be solved exactly by first
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Figure 3. Temporal evolution of the probability distribution function,P(n, t), with the
initial condition P(N,0) = 1 andP(n,0) = 0 for n < N. The Gaussian approximation
is plotted using dashed lines. The probability distribution resulting from the numerical
integration of the master equation is plotted in gray and the steady-state solution in bold
black. At early times, it is not possible to distinguish the approximation from the exact
solution, since both curves coincide.

finding the differential equation satisfied by the generating function

F(z, t) =

∞∑
n=0

P(n, t)zn. (43)

Note that we have moved the upper boundary fromN to infinity, sincegn given
by (42) no longer vanishes atn = N. Starting from (9) the derivation of this
equation proceeds along standard lines (van Kampen, 1981; Gardiner, 1985) to
yield

∂F

∂t
= (1 − z)(e− cz)

∂F

∂z
− cβ(1 − z)F. (44)

The conditions onF are

F(1, t) = 1 and F(z,0) = zn0, (45)

and follow from the normalization condition
∑

n P(n, t) = 1 and the initial condi-
tion P(n,0) = δn,n0, respectively.
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The partial differential equation (44) may be solved by the method of character-
istics to give

F(z, t) =


1

(e− cz)β
8

(
(1 − z)

(e− cz)
exp{−(e− c)t}

)
, if e 6= c

1

(1 − z)β
9

(
ct +

1

1 − z

)
, if e = c

(46)

where8 and9 are arbitrary functions. The solution to this problem was first
obtained byKendall (1948). To determine8 we impose the initial condition
P(n,0) = δn,n0 using (45). Lettingx = (1 − z)/(e− cz) this gives

8(x) =

(
e− c

1 − cx

)β(1 − ex

1 − cx

)n0

. (47)

From (46) and (47) we obtain the solution of (44) with the initial conditionP(n,0)
= δn,n0 to be

F(z, t)=

[
e− c

(e− cz)− c(1 − z)exp{−(e− c)t}

]β
×

{
e(1 − z)exp{−(e− c)t} − (e− cz)

c(1 − z)exp{−(e− c)t} − (e− cz)

}n0

, (48)

and sinceP(0, t) = F(0, t),

P(0, t) =

[
e− c

e− cexp{−(e− c)t}

]β{eexp{−(e− c)t} − e

cexp{−(e− c)t} − e

}n0

. (49)

A similar analysis can be used to determine the function9 in the special case
whene = c, but the result which is found is the same as taking the limite → c
in (48) and (49).

A comparison of theP(0, t) calculated in the linearized theory with the numeri-
cal integration of the master equation is shown in Fig.4. A very good agreement is
always found. There is close agreement between the approximation and the exact
solution for initial times and also for long times. For intermediate times, when
P(0, t) starts increasing, the agreement improves further away fromε = 1.

As t → ∞, the linearized form ofP(0, t) approaches the stationary distribution
of the linear theory, which we will denote byPlin

s (0). It is given by

Plin
s (0) =


(

1 −
c

e

)β
, if c < e

0, if c ≥ e.
(50)
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Figure 4. Comparison between the probability of metapopulation extinction,P(0, t) at
time t , computed from the exact numerical solution, and by using the linear theory (49). A
very good agreement is found. The initial condition taken in the calculation shown in this
figure isP(N,0) = 1 andP(n,0) = 0 for n < N.

We should checka posteriori that the use of the linear approximation is valid.
From (50) we see that ifε = e/c < 1, then the linear approximation predicts that
Ps(0) = 0, which violates the condition which we assumed in the derivation of the
approximation. Therefore, we should restrict the use of the linear approximation
to the regimeε > 1 and to values ofm that are sufficiently small so thatPs(0) is
nonzero (see Fig.1). In the limit m → 0, the Levins’ model resultp∗

= 1 for
ε > 1 is recovered. Here, unlike when we were discussing this limit in the full
model in Section3, there are no subtleties: the upper boundary has been shifted
from n = N to infinity during the linearization, and so there are no finite-size
population effects left. The only place thatN appears in the linear version of the
model is in the constantβ = µN.

In AppendixA, the calculation ofPs(0) in the full model, that is without the
linearization assumption, is presented in the limit of largeN. In exactly the same
way as was discussed in Section3 with regard to the mean and the variance, there
are three cases: (i)N andµN both large; (ii)N large,µN not large andε < 1,
and (iii) N large,µN not large andε > 1. The results in cases (i) and (ii) are
given in AppendixA. However, the steepest descent procedure fails in the third
case. Interestingly, this is exactly the situation where the linearization procedure
works, and so the two methods complement each other. The results of these ana-
lytic approaches are compared to the exact values obtained from the numerical
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Figure 5. The approximate formula [equation (50)] and the exact probability of regional
extinction,Ps(0), are plotted against the parameterε = e/c for comparison purposes for
different values of the external immigration parameter,m, and metapopulation sizes,N.
The largeN approximation is also shown (as filled circles). We plot the second-order
approximation forPs(0), i.e., keeping terms in 1/N, using either equation (A.11) or (A.13)
depending onµN if ε > 1, and using the same formulae except that the functionsf andg
are replaced byf̃ and g̃ if ε < 1 (see AppendixA). The largeN approximation is well-
behaved aroundε = 1, but if ε > 1, whenµN is too small, it is not possible to get a result
because of the failure of the steepest descent method (see AppendixA). In these cases, no
point is drawn. This explains why there is a lack of points whenε > 1 in the two central
plots and in the lower left-hand plot. The right-hand lower plot (N = 50, m = 0.1) is
designed to show that the linear approximation we have performed fails ifm is too large
[see the derivation of equation (42) from equation (15)].

solution forPs(0) using the Tridag algorithm in Fig.5. In this figure it can be seen
to what extent the above-mentioned third case(ε > 1) fails to give a good largeN
estimate forPs(0) as long asµN is too small. There is a very well defined change
of behavior atε = 1, as long asm is not too large. We therefore refer toε = 1 as
thetransition value.

Finally, we use the results of the linear approximation to calculate the mean time
to extinction. The probability of a metapopulation persisting to timet and becom-
ing extinct between timest andt + dt is (d P(0, t)/dt)dt and therefore the mean
time to extinction, given that the initial number of patches occupied wasn0 6= 0, is

TE(n0) =

∫
∞

0 t[d P(0, t)/dt] dt∫
∞

0 [d P(0, t)/dt] dt
=

∫
∞

0
dttρ(t), (51)



930 D. Alonso and A. McKane

with parameterization

ρ(t) =
1

Ps(0)

d P(0, t)

dt
. (52)

On the other hand

TE(n0) = −

∫
∞

0
t

d

dt

[
1 −

P(0, t)

Ps(0)

]
dt,

and so an integration by parts gives the alternative form (Nisbet and Gurney, 1982)

TE(n0) =

∫
∞

0

[
1 −

P(0, t)

Ps(0)

]
dt, (53)

where we have used the fact that[Ps(0) − P(0, t)] decays exponentially at large
times.

The analytic evaluation of (53) using the probability distributions (49) and (50)
whenε > 1, is discussed in AppendixB. The main conclusion is that for values
of β ≡ mN/c of order 1 (corresponding to the values in Fig.4), for example,
β = 1 orβ = 2, the dominantn0 dependence ofTE(n0) is logarithmic:TE(n0) ∼

(e− c)−1 ln n0. Here we have used the asymptotic form of the functionψ(n0 + 1)
(Abramowitz and Stegun, 1965) and assumed thatn0 is not too small.

A population linked to an external source of individuals can never become extinct.
After any metapopulation extinction, sooner or later, an individual from the main-
land ‘rescues’ the metapopulation. So what is being discussed earlier is actually
the time to the extinction of the metapopulation for the first time, given an ini-
tial metapopulation occupancy level,n0, and this is what is being measured in the
simulations. After this first extinction event the metapopulation can be rescued by
immigration from the mainland. However there is virtually no chance of metapop-
ulation recovery if extinction exceeds internal colonization. So, from this point
on, the metapopulation can effectively be assumed to be ‘dead’. Although some
patches will eventually be colonized by external immigrants, these events will be
rare if m is small. In terms of the model, only the ratio of the ratese, c andm
appear in quantities associated with the stationary states [asε orµ defined in (25)],
and the same is true for time-dependent quantities, except that one of the rates will
multiply t and set the time scale. Therefore the phrase ‘m small’ means specifically
m � c andm � e. This is the regime we have investigated when studying the
probability of regional extinction.

Having obtained a rather complete description of the model defined by equa-
tions (7)–(9), we now move on to consider more realistic versions of the model,
specifically those in which the spatial aspects of the metapopulation are taken into
account.
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6. SPATIALLY EXTENDED M ODELS

Since patches are made up of individuals which are discrete entities that interact
locally, it is of paramount importance to understand how spatial modeling modi-
fies the results obtained by means of both nonspatial models and spatially implicit
models (SIMs) (Durrett and Levin, 1994). The potentially critical role of space
in determining the output of ecological interactions has recently been highlighted
(Bascompte and Solé, 1997; Tilman and Kareiva, 1997; Dieckmannet al., 2000)
and it has been found that spatial models often predict intriguing and counterintu-
itive results. Therefore, in this section we analyze two spatially extended metapop-
ulation (SEM) models in detail. These models are more realistic than the nonspatial
models we have considered so far in this paper. However, in general, they are not
amenable to analytic treatments and so we have to rely almost entirely on numerical
investigations. In the context of spatially extended models, the nonspatial models
may be seen as amean field approximation. So we may say that the main purpose
of this section is to compare our earlier results (now viewed as the results of a
mean field assumption) with two SEM models: the lattice metapopulation model
(SEM), and a SRM model.Hanski(1994b) makes a distinction betweenspatially
realistic models, which incorporate landscape structure—where every patch in the
network is assigned a position and an area—andspatially explicitmodels, such as
the lattice model. As a preliminary step, we compare our analytical approxima-
tions with exact stochastic realizations of theN-patch MIM model introduced in
Section2. After this we go on to discuss the lattice model in its usual manifes-
tation: where an empty patch is colonized only from its nearest-neighbor patches.
This lattice approach has been often used to study the effect of space on ecologi-
cal interactions. It is also considered here, because many results involving spatial
quantities in metapopulation theory have been obtained using this approach. The
lattice metapopulation model may be considered as an example of a contact process
(Mollison, 1977; Snyder and Nisbet, 2000) lying within a broad class of stochastic
spatial models called interacting particle systems (Durrett, 1999). Finally, and even
more usefully for practical purposes, we address a second spatial approach. It is
a spatially realistic MIM stochastic model with a finite number of habitat patches
which have known areas at particular spatial locations within a region. It is based
on previous metapopulation models of this kind (Hanski, 1994a; Hanski and Ovas-
kainen, 2000). This modeling approach, which started with the incidence function
model (Hanski, 1994a), has filled a gap between modeling and empirical studies
and, since it was introduced, it has been successfully used for efficient parameter
estimation in several empirical metapopulations (Hanski, 1999; Moilanen, 1999).
While local dynamics and patch heterogeneity are expected to violate the mean
field assumption, we would like to determine by how much analytical mean field
predictions differ from numerical estimations of those quantities in models which
take into account local dynamics, patch heterogeneity, and patch network structure
explicitly.
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6.1. The NNN-patch mainland–island metapopulation: a spatially implicit model
(((SIM))). To build up exact stochastic realizations of the model introduced in Sec-
tion 2, consider anN-patch system which at any time will be described by the
number of occupied patches at timet , n1(t), or equivalently the number of empty
patchesn0(t) = N − n1(t). The system is modeled as a continuous-time Markov
process in which transitions occur asynchronously so that within a short enough
time interval only a single transition can take place (Durrett, 1999). The model
contains the following three processes:

• Extinction. The same extinction ratee is assumed for all sites. Thus the
probability of an extinction event within the system is:

Pr{E} = e n1 dt. (54)

• Colonization. Empty sites can be colonized internally at a colonization
ratec. Now, the probability of a colonization event is:

Pr{C} = c
n1

N
n0 dt. (55)

• Immigration. Empty sites can be colonized by external immigrants at an
immigration ratem. The probability of an immigration event is:

Pr{I} = m n0 dt. (56)

Equations (54)–(56) are simply a rewriting of equations (4)–(6) in Section2,
but here we have put them in the same form which will be used to discuss the
two subsequent models. In AppendixC we formulate the procedure to be used
in simulations in a precise and clear way. Our simulation strategy is a natural
extension of that given byRenshaw(1991) for a general birth–death process, but
based on random patch choice and a rejection method [as described byPresset al.
(1992)].

6.2. The NNN-patch mainland–island metapopulation: a spatially explicit model
(((SEM))). In this spatially explicit model, the patch network is modeled as a regular
square lattice (see Fig.6) with periodic boundary conditions. Patches are taken to
be sites in the lattice. Thus, each site can be inhabited by one local population.
While both the extinction and immigration are still assumed to depend only on the
global densities—as in the SIM—the internal colonization is now taken to depend
on the local density of occupied sites. The simplest choice is to assume that colo-
nization only takes place from thez nearest neighbors of an available site, wherez
can be either 4 or 8, depending on the neighborhood scheme chosen (either Von
Neumann or Moore, respectively).Snyder and Nisbet(2000) have investigated
such a model in the absence of immigration. Although this model appears to allow
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Figure 6. Temporal evolution of two lattices (upper plots, 20× 20, and lower ones, 200×
200) for the lattice model (SEM) (c = 1, e = 1, m = 0.0001). The metapopulation
begins with all sites populated. As a consequence of local colonization processes, clusters
of disconnected occupied sites are formed as time progresses. Three snapshots are shown
in each case.

only very local interactions between sites, clusters of occupied sites which are near-
est neighbors form extended areas which give rise to much longer range effects.

The system is again modeled as a continuous-time Markov process in which
transitions occur asynchronously so that within a short enough time interval only
a single transition can take place. Notice that theN-site lattice system may also
be described by the number of occupied sites,n1, or by the number of available
sites,n0. But now, we focus on the available sites and the 0 toz nearest neighbor
populations that can potentially colonize it. Letn0i be the number of available
sites surrounded byi potential colonizer local populations, so that

∑z
i =0 n0i = n0.

These are the only quantities we need in order to define the probabilities of the
three processes occurring within the lattice model:

• Extinction. The same extinction ratee is assumed for all sites. The proba-
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bility of an extinction event is:

Pr{E} = e n1 dt. (57)

• Colonization. Empty sites can be colonized internally at a colonization
ratec. The probability of a colonization event is taken to be proportional
to the number of occupied sites surrounding the empty site:

Pr{C} =

z∑
i =0

c
i

z
n0i dt. (58)

• Immigration. Empty sites can be colonized by external immigrants at an
immigration ratem. The probability of an immigration event anywhere into
the lattice is:

Pr{I} = m n0 dt. (59)

Notice that there is only a slight, but crucial, difference between equations (54)–
(56) and equations (57)–(59); the substitution in the colonization rate of a global
density (55) for a local density of occupied sites (58). In Fig. 6 the temporal evo-
lution of two lattices is shown.

6.3. The NNN-patch mainland–island metapopulation: a spatially realistic model
(((SRM))). The spatially realistic version of theN-patch MIM model we discuss
here incorporates the spatial structure of a finite patch network. In this respect it
represents a substantial improvement over nonrealistic approaches. As in previous
realistic metapopulation models (Hanski, 1994a; Hanski and Ovaskainen, 2000), it
considers a finite number of patches, labeled byi , at given geographic positions.
The model is built again as a continuous-time Markov process in which transi-
tions occur asynchronously. By contrast with the SIM and SEM, transitions are
now completely patch-dependent. The same three basic processes of extinction,
colonization and immigration are again introduced:

• Extinction. Patch extinction rate is known to be inversely proportional to
patch area,Ai . The underlying assumptions here are that population size
typically scales like patch area and extinction risk inversely with population
size. Thus, the probability of an extinction event in the whole patch network
is the sum of extinction probabilities over patches:

Pr{E} =

N∑
i =1

Ei pi dt =

N∑
i =1

ẽ

Ai
pi dt (60)

whereEi is the patch-dependent extinction rate:

Ei =
ẽ

Ai
, (61)
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and where we have defined

p j =

{
0, if patch j is empty
1, if patch j is occupied.

(62)

• Colonization. The probability of a colonization event within the patch net-
work is:

Pr{C} =

N∑
i =1

Ci (1 − pi )dt (63)

whereCi is the patch-dependent colonization rate. Empty sites can be colo-
nized internally at a colonization rate which should increase with the number
and size of neighboring populations, and decrease with the distance of the
focal patch from the colonizing populations:

Ci = c̃
N∑

j 6=i

p j A j exp(−αdi j ), (64)

wheredi j is the Euclidean distance between patches, and 1/α is a constant
setting the average migration distance.

• Immigration. The definition of this rate introduces a mainland effect. The
probability of an immigration event anywhere into the patch network is:

Pr{I} =

N∑
i =1

m(1 − pi )dt, (65)

wherem represents the background colonization rate due to the arrival of
immigrants from the mainland which may be viewed as propagule rain
(Gotelli and Kelley, 1993).

We have used the same notation for the immigration rate in the SRM as in the
SIM and SEM, namely,m. This is because (65) clearly equalsmn0dt, if n0 denotes
the number of unoccupied patches, in agreement with (56) and (59). By contrast,
although the parameters defined asẽ andc̃ in the SRM resemble the parameterse
andc arising in the SIM and SEM, they have different meanings, even different
physical units. The relationship between them will be discussed in more detail in
Section6.4.

The definitions of the three processes above completely specify the model. How-
ever, other variants of the model are possible, and could be investigated using the
numerical approach we will shortly describe. For instance, other choices forCi

which would also be valid include

Ci = c̃
S2

i

S2
i + y2

, (66)

Ci = c̃(1 − exp(−ySi )), (67)

Ci = c̃
Si

Si + y
, (68)



936 D. Alonso and A. McKane

where Si is the number of colonizing individuals—propagule size—arriving at
patchi from any other populated patch in the network. In turn, it is assumed that
Si is a decreasing function of patch distance and proportional to source patch area:

Si =

N∑
j 6=i

p j A j exp(−αdi j ). (69)

Notice that equation (64) assumes the patch colonization rate to be proportional
to propagule size. This linear dependency is the simplest assumption, and has also
been adopted by others [for example,Hanski and Ovaskainen(2000)] and is the
limiting case of equations (67) and (68), when propagule size is very small. Fur-
thermore, any of the three definitions given by equations (66)–(68) tend toward a
constant patch colonization rate in the limit of large propagule size. Although this
may be sensible and realistic, there is no need to make this assumptiona priori,
because metapopulation dynamics itself actually leads to asymptotic values of
patch colonization rates as soon as the system reaches equilibrium, even under
the simple linear dependence assumption. Interestingly, and this is also a reason to
keep the linear assumption, if we consider a patch network of equally sized patches
and infinite average migration distance (α = 0), only the patch dependent coloniza-
tion rate given by equation (64), ensures that the stochastic SRM model defined
through equations (60)–(65) collapses into the SIM model previously described.
We will take advantage of this fact when comparing results.

Having defined this model as a continuous-time Markov process in which transi-
tions occur asynchronously, we generate our results by performing stochastic sim-
ulations (see AppendixC) and averaging over realizations. This procedure has
two advantages. First, it is completely general, since other particular definitions of
patch-dependent rates could have been adopted. Secondly, when computing persis-
tence times, this method not only provides averages, but also variances, and even
whole lifetime distributions. Furthermore, there is a clear connection between this
modeling approach and the theory developed byHanski and Ovaskainen(2000),
although their model is deterministic, rather than stochastic. The assumptions of
both models are essentially the same, since the definition of our patch-dependent
colonization (64) and extinction rates (61) are exactly those ofHanski and Ovas-
kainen(2000); the only difference is that the external immigrationm is equal to
zero in their model. In order to make this connection even more evident, consider
a given patch network configuration. We may define the probability of having the
i th patch populated at timet as an average over realizations, labeled byl , when the
number of realizations,R, tends to infinity:

fi (t) = lim
R→∞

∑R
l=1 pl

i (t)

R
. (70)

SinceEi is the extinction rate of patchi , Ei dt is the probability of extinction of
the i th patch when populated, within a vanishingly small time intervaldt. Similar
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Figure 7. Temporal evolution of the occupation probabilities for two patches of given
areas belonging to a pre-defined complex patch network. The patch network has been set
up by using the same prescription as given in Section6.4.1. Temporal evolution is com-
puted through numerical integration, using a 5th order Runge–Kutta method (Presset al.,
1992), on the system of ordinary differential equations defined by equations (61), (64)
and (72). For comparison purposes, and using the same pre-defined patch network, the
estimate of the probabilities [see equation (70)] at discrete times is computed by construct-
ing 50 000 stochastic realizations at each time, making use of the simulation algorithm
given in AppendixC.

termsCi dt andmdt give the probability of colonization and immigration. There-
fore, the probability of a patch being occupied evolves in time as follows:

fi (t + dt) = [1 − Ei dt] fi (t)+ [Ci + m] dt[1 − fi ], (71)

which leads to an equation that gives the rate of change of the probability of a patch
being occupied:

d fi
dt

= (Ci + m)(1 − fi )− Ei fi . (72)

This equation is the starting point of the theory developed byHanski and Ovas-
kainen(2000). Since patch dependent colonization rates depend in general on the
probability of the other patches being occupied, what we actually have here is a
system of coupled ordinary differential equations. Therefore, given a particular
patch network setting, a particular definition of patch rates, and assuming equa-
tion (70), we can compare the temporal evolution of the probability of patches
being occupied—occupation probabilities—computed either by numerical integra-
tion of the system (72), or averaging over stochastic realizations. This is exactly
what is done in Fig.7, where a close agreement between the two methods of cal-
culating the corresponding probabilities is shown.

As mentioned earlier, different assumptions lead to different definitions of col-
onization and extinction rates. However,Hanski and Ovaskainen(2000) develop
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a theory which is not restricted to particular functional forms of colonization and
extinction rates. They introduce the concept of the metapopulation capacity,λ, and
give a condition under which the persistence of the metapopulation is guaranteed:

λ > ε̃, (73)

whereε̃ = ẽ/c̃, a ratio of an extinction to a colonization parameter. Whenever con-
dition (73) is met, there exists an equilibrium solution,f ∗

i , for the system described
by equation (72) with f ∗

i > 0 for all i . This means that the whole metapopulation
is preserved on this landscape structure. So, at equilibrium, each and every patch
of the system has a nonzero probability of hosting the population. However, our
approach is different. We are interested in extinction dynamics. So, we are working
in the regime where the metapopulation is really endangered (ε̃ � 1) and declin-
ing, and our aim is to determine extinction times by means of various analytical
and numerical methods. The quantity of interest to us is, once again,P(0, t), the
probability of having a global extinction at timet . Within this theoretical frame-
work, the simplest expression for this quantity is obtained by assuming that the
probability of patchi being occupied is independent of the probabilities of occu-
pation of the other patches. In this caseP(0, t) can be written as the product of the
probabilities of each patch being empty:

P(0, t) =

N∏
i =1

(1 − fi (t)). (74)

Using this result we can now compute the temporal evolution of the probabil-
ity of having complete extinction by numerical integration of equation (72) (see
also Fig.8). In fact, the occupation probabilities are not independent unless col-
onization is absent. However, we would expect that as long as immigration and
extinction processes dominate over colonization, the occupation probabilities will
be only weakly coupled and (74) will be a reasonable approximation toP(0, t).
In fact, we will see in the next section, that this is the regime where we observe
a good agreement between this probability and the same quantity in an equiva-
lent SIM model, whereequivalenceis precisely defined through equations (75)
and (76) in the next section. Moreover, this close agreement opens up the possibil-
ity of using equation (53) to compute mean times to extinction, even for realistic,
complex patch networks, by calculating this integral numerically.

6.4. Comparison of different approaches.Given a complex patch network, our
purpose is to assess whether we can make use of the analytical mean field results
derived from the SIM to determine extinction times in realistic, complex patch
networks. Thus, specifically we should compare SIM results and SRM results.
We have already remarked that the parametersẽ and c̃ in the SRM differ frome
andc arising in the SIM and SEM, whereas the external immigration ratem, by
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Figure 8. Temporal evolution of the probability of global extinction occurring in a com-
plex patch network created as indicated in Section6.4.1. The same quantity,P(0, t), in n
equivalent SIM model defined using equations (75) and (76) is also plotted for comparison
purposes.

contrast, has the same meaning for all three models. Therefore, if we want to test
our analytical approximations and make comparisons among models, we need to
identify quantities in the SRM which play the role ofe andc in an equivalent SIM.

Let us first consider the extinction rates. In the SIM, described by the master
equation (9) and the transition rates derived from equations (54)–(56), the patch
extinction rate is patch independent, and is simply the parametere. By contrast,
in the SRM, since large areas have lower extinction rates, they remain populated
longer than smaller areas do. Thus, the contribution of each patch to an average
patch extinction rate should be proportional to patch area. So, a properly weighted
average patch extinction rate can be defined as follows:

〈e〉 =

∑N
i =1 Ei Ai∑N

i =1 Ai

=
Nẽ

AT
=

ẽ

〈A〉
, (75)

where 〈A〉 = AT/N is the average patch area andAT is the total patch area.
Therefore, patch network extinction dynamics can be roughly characterized by the
patch extinction rate corresponding to the network area average〈A〉.

With regard to colonization, the identification between the models can be made
by looking at the case where an empty patch is colonized when the rest of the
patches are occupied. In this situation, within the SRM modeling framework, (63)
and (64) give a patch-dependent probabilityc̃

∑N
j 6=i A j exp(−αdi j )dt. Averaging

over patches, we get a patch-independent probability of colonization. Within the
SIM framework the probability is not patch-dependent and takes the simple form
c(N−1)dt/N. If we denote the quantity in the SRM which is to be identified withc
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in the SIM as〈c〉, we can make the following straightforward correspondence:

〈c〉(N − 1)dt

N
=

1

N

N∑
i =1

(
c̃

N∑
j 6=i

A j exp(−αdi j )dt

)

⇒ 〈c〉 =
c̃

N − 1

N∑
i =1

N∑
j 6=i

A j exp(−αdi j ). (76)

In particular, assuming infinite average migration rate,α = 0, a little algebra shows
that 〈c〉 = c̃

∑
i Ai , which reinforces the idea of̃c in the SRM as a colonization

rate per unit area.
To sum up, within some parameter regime (see Figs11 and 12), which turns

out to be that characterized by rather strong and rapid extinctions in comparison
to internal colonizations, and from the point of view of extinction dynamics, a
complex patch network of given areas at fixed spatial locations behaves in the same
way as a SIM which is described simply by average extinction and colonization
rates given by equations (75) and (76), with the same external immigration rate,m.
Thus, a realistic patch network can effectively be modeled as a SIM, but with these
two particular averaged rates acting as the effective extinction and colonization
rates.

When comparing results, we need to average over stochastic realizations. For
the SRM model, stochastic realizations require the introduction of a complex patch
network described earlier. In the next subsection, we describe how patch networks
are constructed in practice.

6.4.1. Complex patch networks.In the SRM we have, in essence, two kinds of
parameters: those fixing the patch network structure (involving the specification of
patch areas and patch locations within an overall area which defines the metapopu-
lation) and those which define the model itself (involving the colonization, extinc-
tion and migration dynamics, i.e.,α, c̃, ẽ andm). In this paper we will fix those
parameters concerned with the geometry of the patch network, and will investigate
the properties of the model when the second group of parameters change. In other
words, our central interest will not be in how patch network geometry influences
extinction dynamics. This would make an interesting future investigation.

In every one of our simulations, patches are located at random within a square
area (7000 u× 7000 u), where u are arbitrary length units. The specific areas of
every patch are chosen at random from a lognormal distribution of average 1250 u2

and standard deviation 0.3, a prescription adopted byMoilanen (1999). The α
arising in the colonization rates is taken to have the value of 1.9× 10−3 u−1 which
implies an average migration distance of≈500 u, making internal colonization a
rather local process. Any increase in the average migration distance is expected to
make the SRM results closer to those from the spatially implicit approach. This
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is why we have set up patch networks using this rather low value for the average
migration distance: we wanted to test our analytical approximations even under
rather local colonization conditions.

6.4.2. The dimensionless SRM.So far we have worked with variables and
model parameters which have physical units, as seen in the last section where the
patch network structure was given in terms of a scale sizeu. However, the dynamic
behavior of the model cannot depend on the physical units chosen to measure the
quantities we use to describe it. So, it is important to rewrite the model in a form
which is independent of the units we use. This is very easy to do in this particular
case.

Let L be a linear characteristic dimension of the region where the metapopulation
is found. We may define a characteristic time by means of the external immigra-
tion, m:

τ =
1

m
. (77)

Any model parameter involving length and time scales can now be made dimen-
sionless using these two characteristic scales. Some of the more important dimen-
sionless parameters are:

• The relative average migration distance,md:

md =
1

α′
=

1/α

L
. (78)

• The relative position of patchi :

xi =
Xi

L

yi =
Yi

L
, (79)

where(Xi ,Yi ) are the physical coordinates of patchi .
• The relative area of patchi :

ai =
Ai

L2
. (80)

• The relative patch internal colonization rate:

ei =
Ei

m
. (81)

• The relative patch extinction rate:

ci =
Ci

m
. (82)
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Table 1. Comparison between parameter values of the SRM and its dimensionless coun-
terpart for the same patch network as used in Fig.7. Rewriting the model in terms of
dimensionless parameters allows for easy recognition of, for instance, the degree of local-
ity of the model, or the way patch areas are spread over the whole metapopulation region.

SRM Dimensionless SRM

N 30 30
Regional area 4.9 × 107 u2 1

md 501 u 0.075
〈A〉 1250 u2 2.55× 10−5

α 1.9 × 10−3 u−1 13.3
ẽ 1293.7 0.053
c̃ 1.5 × 10−4 1.03× 107

m 5 × 10−4 1

Equivalent SIM 〈c〉 = 0.1, 〈e〉 = 1, m = 5 × 10−4
〈c〉′ =

〈c〉
m , 〈e〉′ =

〈e〉
m , m′

= 1

The definition of the above quantities allows the connection between the SRM
parameters, and a new set of dimensionless parameters on which the dimensionless
model actually depends, to be made (see Table1). So, we can rewrite the relative
patch-dependent rates in terms of relative quantities as:

ei =
ẽ′

ai

ci = c̃′

N∑
j 6=i

p j a j exp(−α′d′

i j ), (83)

where

α′
= Lα

ẽ′
=

ẽ

L2m

c̃′
=

c̃L2

m
, (84)

andd′

i j is the distance between patches measured in relative length units.
To sum up, by introducing a characteristic time scale, it is clear that the dimen-

sionless SRM has only two relevant patch rates. Similarly, its relevant spatial
lengths (or areas) can be expressed simply as fractions of the characteristic length,
L (or total regional area,L × L) of the metapopulation.

6.4.3. Stochastic realizations.At every stage where we have computed aver-
ages or distributions over stochastic realizations of the SRM, we have proceeded
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Figure 9. Temporal evolution of the number of occupied patches in different stochastic
realizations of the SIM, SEM, and SRM. The evolution of the mean number of occupied
patches within the mean field approach [equation (1)] is also plotted in bold black.

in two alternative ways. In the first method, the same patch network was used in
every stochastic realization. This was the approach adopted in Fig.7. By con-
trast, in Figs9–12, a new patch network, following the same prescription as given
earlier, is constructed for every new stochastic simulation carried out. Finally,
and using equations (75) and (76), we choosẽe and c̃ parameters arising inEi

andCi , respectively, in such a way that〈e〉 and〈c〉 match the values of the equiva-
lent SIM, defined by patch-independent extinction and colonization rates,e = 〈e〉,
andc = 〈c〉, respectively, and also choose the same external immigration rate,m.
In this way for each computation of a new value of, for instance, the mean time to
extinction, we are generating a family of patch networks which share the same spa-
tial geometry in a statistical sense, and which are equivalent to the same spatially
implicit N-patch mainland–island metapopulation model (SIM).

6.5. Results and discussion.The main results concerning the temporal behavior
of the different approximations we have performed in order to investigate extinc-
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Figure 10. Temporal evolution of the probability of havingn patches occupied at timet for
different models of metapopulation dynamics. In the SRM,N = 200 patches are located at
random in the same way as in Fig.9. The same value forα was also used. Patch extinction
ratesEi and the colonization parameterc̃ are chosen to give rise to an equivalent SIM with
the same extinction and colonization rates.

tion dynamics and, in particular, estimate persistence times in realistic model meta-
poulations, are summarized Figs9–12.

In Fig. 9, some stochastic realizations of theN-patch MIM model are shown.
In the central and lower plots, the stochastic simulations of the SIM are seen to
match the average given by the mean field approach, while lattice simulations give
values which are significantly lower than those given both by the spatial implicit
stochastic realizations and the mean field approach. The evolution of the number
of occupied patches in the SRM model is shown in the upper plot. In these three
stochastic realizations, the patch network has been set up in such a way that it is
equivalent to a SIM with parameters〈c〉, 〈e〉, andm.

In Fig. 10, the temporal evolution of the probability of keepingn local popula-
tions extant at timet is shown starting with a completely occupied metapopula-
tion, i.e., P(N,0) = 1. The different models agree qualitatively, and even quan-
titatively, quite well. Notice that most lines corresponding to the SIM overlap at
each time, except for the final one(t = 5), where slight differences can be seen.
The distributions computed using stochastic realizations of an equivalent SRM also
quantitatively match those obtained using the spatial implicit approach.
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Figure 11. Mean time to extinction. Five thousand stochastic realizations were performed
to compute the average of the metapopulation lifetime for each parameter combination.

The time until the last remaining occupied patch (or site) becomes extinct for
the first time is defined as the metapopulation lifetime. In other words, lifetime
is the persistence time until a global metapopulation extinction event occurs for
the first time. In all simulations of Figs11 and12, the starting occupation level
was always chosen asn0 = N. In Fig. 11, we numerically evaluated the integral
in (53) when c < e, and compared the result with the mean time to extinction
after performing a large number of numerical simulations for the SIM, SEM, and
SRM. For the SRM stochastic simulations, networks were set up following the
prescription given in Section6.4.1, with once again the parametersc̃ andẽ fixed to
make the model equivalent to a SIM with parametersc = 〈c〉, e = 〈e〉, andm. In
plot A, the mean time to extinction (persistence time) has been evaluated using the
linear approximation (both forc = 0.5 andc = 0.1). Whenc = 0.1, stochastic
realizations are also performed and good agreement is found among all the models
and the analytical prediction, as long as the number of patches is not too large
(N < 40). In any case, the persistence time grows with the size of the network.
In plot B, linear approximation curves match values of SIM and SEM (circles)
as long as colonization rates have values significantly lower than extinction rates.
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Figure 12. Lifetime distributions of three different metapopulation models. (a) The SIM
model of a MIM, where colonization dynamics depends on global densities. (b) The spa-
tially explicit stochastic model (SEM) of a MIM, where colonization takes place locally
as in a contact process. (c) The SRM model of a MIM, when colonization depends on
network structure, which has been set up following the prescription given in Section6.4.1.
Probability distributions are evaluated by performing 50 000 stochastic realizations of each
model.

In plot C,β = N, m/c = 2, so the linear approximation has been computed using
equation (B.10) of Appendix B. In this case, extinction rates are large enough
in comparison with colonization rates that the linear approximation captures the
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behavior of the persistence time, at least for the SIM and the SEM. However, SRM
realizations give larger estimates than the other two models. This disagreement in
metapopulation lifetimes tends to decrease as the ratio of extinction to colonization
rates increases.

In general, we notice that SRM realizations give rise to persistence times slightly
greater than SIM approximations. Local colonization can be argued to make meta-
populations more prone to extinction in comparison to spatially implicit predic-
tions. This is actually what we find in our lattice model (SEM). In a strongly
local model such as the lattice SEM, as the metapopulation decays, more and more
unconnected empty lattice sites arise. These sites cannot be internally rescued
because of isolation, which further accelerates the process of regional extinction.
Nevertheless, for our stochastic SRM we find the opposite result: spatial structure
and patch heterogeneity linked to local colonization lets realistic model metapop-
ulations persist longer on average. Therefore, any analytically predicted lifetime
of a metapopulation using the linear approach [Section5, equation (53)] within a
mean field [and assuming patch extinction and colonization rates to be equal for all
patches and given by equations (75) and (76)] will be lower than that obtained by
our spatially realistic approach. Since real metapopulations are much more reliably
modeled using spatially realistic models, it is probable that our analytical approach
will tend to underestimate regional persistence in real situations. However, notice
also (see the upper plot of Fig.11) that there is a parameter regime characterized
by strong extinction rates, and also by a low number of patches, where the behavior
of the SRM model is well described by the mean field approach. The same idea
can also be seen in the tendency of the SRM curve to asymptote to the SIM curves
as the ratioe/c increases (lower plot of Fig.11).

The lifetime distributions, shown in Fig.12, display other interesting features.
Lifetime distributions were computed for the three different stochastic models we
have defined. The shape of lifetime distribution curves,P(t), for the different
models are comparable. As long asc � e, the variance of the distribution remains
small. Wheneverc ∼ e, the differences amongst the distributions from different
spatially explicit models not only become apparent, but also the lifetime distribu-
tions become much broader. Approaching the transition valueε = 1, the lifetime
variance keeps on increasing. Therefore, our approach through the SIM is unable to
give good lifetime predictions if the metapopulation is in the regime where extinc-
tion and colonization balance out.

7. CONCLUSION

In this paper we have carried out an extensive study of a stochastic model of
metapopulation dynamics, investigating both its time evolution and its stationary
properties, its spatial and nonspatial forms, and used both analytical and numerical
calculations in the course of the investigation. The model itself is a generalization
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of the classical Levins’ model which adds stochastic effects and immigration from
the mainland.

We began with the nonspatial version, by deriving a master equation forP(n, t),
the probability ofn of the patches being occupied at timet . This equation is of
a relatively simple form: it represents a one-step Markov process. The transition
probabilities are not linear functions ofn, so it is not exactly soluble, but exact
(although rather formal) expressions can be found for the stationary probability
distributionsPs(n), the mean number of occupied patches in the stationary state
〈n〉s, as well as the corresponding higher moments. We assumed that the total
number of patches was large(N � 1), in order to obtain relatively simple expres-
sions. These are in good agreement with the results of the numerical solution of
the master equation and the direct simulation of the stochastic process, down to
surprisingly small values ofN.

The time-dependence can also be well characterized. As long as the probability
of extinction of the metapopulation is small(P(0, t) � 1), P(n, t) is not strongly
influenced by the boundary atn = 0 and, assuming that the effect of the boundary
at n = N is similarly negligible, it consists of a Gaussian distribution whose peak
moves according to the deterministic version of the model. The width of this dis-
tribution increases with time, and is explicitly calculated in Section4, at least in
the limit whenN can be assumed to be large. As soon asP(0, t) becomes signifi-
cant this Gaussian assumption breaks down, but fortunately another approximation
now becomes applicable:P(n, t) only has significant contributions for smalln.
This means thatO(n/N) terms in the transition probabilities of the master equa-
tion may be neglected and a linear one-step process is obtained. Such processes are
exactly soluble, and so exact forms for bothP(0, t) andPs(0)may be found in this
case. This in turn allows us to calculate the mean time to extinction of the metapop-
ulation, givenn0 patches were initially occupied. Within the linear approximation
we found that this mean time was infinite if the colonization rate,c, was greater or
equal to the extinction ratee, and had the form(e− c)−1 ln n0 if the extinction rate
was greater than the colonization rate andn0 was not too small. A numerical inves-
tigation of the full model, that is, without the linear approximation showed that the
linear approximation works well as long as neither the immigration rate from the
mainland,m, nor the number of patches,N, are not too small. Furthermore, the
change of behavior atε = e/c = 1 in the linearized version persists in the full
model, and is sharper the smaller the immigration rate from the mainland,m, is.

In Section6 we turned to the investigation of more realistic models—those where
the spatial distribution of patches was taken into account. In the context of these
models, the nonspatial model situated in the earlier sections of the paper may be
viewed as a type of mean field approximation of the spatial models. An analytic
treatment of the spatial models is difficult, so our investigations were of a numeri-
cal nature, however, these allow us to assess the validity of the mean field approx-
imation by comparing these results to those obtained from the spatially implicit
version.
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The most obvious, and rather classical, spatial version of the model consists
of representing patches as sites on a regular two-dimensional lattice. However,
another more interesting version, which has its roots in the study of real metapopu-
lations, is a SRM version for a finite number of habitat patches, that actually admits
a formal description that makes it closely related to a model developed byHanski
and Ovaskainen(2000). Although there are many interesting questions relating
to these models and to their inter-relation, we focused primarily on the question
of the mean time to extinction. Concerning this point, the main conclusion from
our numerical investigations is that it is possible to simplify the complexity of a
real patch network using equations (75) and (76), and make use of our analytical
approximation to estimate mean times to extinction. The results shown in Figs11
and12 indicate that there is sufficient agreement between the various models and
the mean field approach, that qualitative trends can be identified, and for the range
of parameterse> c, that definite predictions are possible.

We believe that the work, which we have presented here, has extended the scope
of metapopulation modeling and hope that by stressing the extinction dynamics of
these models, we have contributed to the understanding of the nature of population
extinctions.
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sions. We also thank Ben Bolker and an anonymous reviewer for their critical com-
ments which helped us to improve the successive versions of this paper. AM wishes
to thank the Complex Systems Research Group at the Universitat Politècnica de
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APPENDIX A

Here we consider the evaluation of sums of the form

SN(α, γ ) ≡

N∑
n=0

(
N

n

)
0(n + γ )

0(γ )
αn, (A.1)

which are required to obtain expressions forPs(0) (the caseγ = β) and〈n〉s (the
caseγ = β + 1) in Section3.

We begin by converting the sum (A.1) to an integral:

SN(α, γ )=
1

0(γ )

N∑
n=0

(
N

n

)∫
∞

0
dxxn+γ−1e−xαn



950 D. Alonso and A. McKane

=
1

0(γ )

∫
∞

0
dxxγ−1e−x

N∑
n=0

(
N

n

)
(αx)n

=
1

0(γ )

∫
∞

0
dxxγ−1(1 + αx)Ne−x

=
α−γ

0(γ )

∫
∞

0
dyyγ−1(1 + y)Ne−(α−1)y. (A.2)

The integral in (A.2) equals0(γ )U (γ, N + γ + 1;α−1), whereU is a confluent
hypergeometric function (Abramowitz and Stegun, 1965). A Kummer transforma-
tion shows that this may also be written in terms ofU (−N,1−γ − N;α−1) which
is related to the generalized Laguerre polynomialL (λ)n (z) (Abramowitz and Stegun,
1965). So finally we obtain

SN(α, γ ) = αNU
(
− N,1 − γ − N;α−1

)
= (−1)N N!αN L (−γ−N)

N

(
α−1

)
. (A.3)

As a check we note that sinceL (−γ−N)
N (α−1) is a polynomial of orderN in α−1,

thenαN L (−γ−N)
N (α−1) is a polynomial of orderN in α. Takingγ = β we find

from (18)

(Ps(0))
−1

= (−1)N N!αN L (−β−N)
N

(
α−1

)
. (A.4)

Therefore, from (17)

Ps(n) =

(
N

n

)
0(n + β)

0(β)

(−1)N
(
α−1

)N−n

L (−β−N)
N

(
α−1

)
N!
. (A.5)

Similarly from (24)

〈n〉s = β

{
L (−β−1−N)

N

(
α−1

)
L (−β−N)

N

(
α−1

) − 1

}
. (A.6)

The expressions (A.4) and (A.6) for Ps(0) and〈n〉s are not very transparent. To
obtain more useful equations for these quantities we look at their asymptotic forms
when N becomes large. As we will see, the results we obtain will hold down to
even relatively small values ofN.

Trying to obtain the largeN form of the quantities in (A.3) is difficult—for
example, in the Laguerre polynomial there is anN dependence in the order, the
upper index and the argument (sinceα = c/eN). Therefore, it is better to begin
from (A.2). In the caseγ = β it can be written as

(Ps(0))
−1

=
εNµNNµ

0(Nµ)

∫
∞

0

dy

y
expN{µ ln y + ln(1 + y)− εy}, (A.7)
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whereµ and ε are N-independent constants given by (25). Writing a similar
expression for the caseγ = β + 1 and dividing one by the other one finds

N∑
n=0

(
N

n

)
0(n + β + 1)

0(β + 1)
αn Ps(0) =

ε

µ

{ ∫
∞

0 dyexp[N f (y)]∫
∞

0 dyg(y)exp[N f (y)]

}
, (A.8)

where

f (y) = µ ln y + ln(1 + y)− εy, g(y) =
1

y
. (A.9)

In this notation

Ps(0) =
0(Nµ)

εNµNNµ

{∫
∞

0
dyg(y)exp[N f (y)]

}−1

. (A.10)

The integrals in (A.8) and (A.10) are in the standard form for the application of
the method of steepest descents. There are two steps we need to take:

(a) Find the values ofy such thatd f/dy = 0. It turns out that there is a positive
root and a negative root. The integrals in (A.8) and (A.10) will be dominated
by values ofy near the positive root which we denote byy∗.

(b) To get the contributions near toy∗ we expand about it:y = y∗
+ ŷ and

keep only terms in̂y2. The resulting integrals are Gaussian and are easily
performed.

Following these steps we find

Ps(0)=
0(Nµ)

εNµNNµ

√
N| f (2)(y∗)|

2π

exp{−N f (y∗)}

g(y∗)

{
1 +

1

2N

g(2)(y∗)

g(y∗) f (2)(y∗)

+
5

24N

[ f (3)(y∗)]2

[ f (2)(y∗)]3
−

1

2N

f 3(y∗)g(1)(y∗)

[ f (2)(y∗)]2g(y∗)
−

1

8N

f (4)(y∗)

[ f (2)(y∗)]2

+ O

(
1

N2

)}
(A.11)

and∫
∞

0 dyexp[N f (y)]∫
∞

0 dyg(y)exp[N f (y)]
= y∗

+
1

2N

{
2

y∗ f (2)(y∗)
+

f (3)(y∗)

[ f (2)(y∗)]2

}
+ O

(
1

N2

)
.

(A.12)
There are clearly significant cancellations when the ratio of the two integrals which
appear in (A.12) are calculated, which results in a far simple expression for the
mean than for the stationary probability distribution.

From (24), (A.8) and (A.12) we find that the approximate form for the mean in
the stationary state, valid for largeN, is given by (27).
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The result forPs(0) can be simplified slightly ifµ is not too small, so thatNµ �

1. Then an application of Stirling’s approximation for the Gamma function gives

Ps(0)=

√
| f (2)(y∗)|

√
µg(y∗)

exp{−N[ f (y∗)+ µ− µ ln(µ/ε)]}

{
1 +

µ−1

12N
+

1

2N

×
g(2)(y∗)

g(y∗) f (2)(y∗)
+

5

24N

[ f (3)(y∗)]2

[ f (2)(y∗)]3
−

1

2N

f (3)(y∗)g(1)(y∗)

[ f (2)(y∗)]2g(y∗)

−
1

8N

f (4)(y∗)

[ f (2)(y∗)]2
+ O

(
1

N2

)}
. (A.13)

If µ is so small that the conditionµN � 1 no longer holds, then Stirling’s
approximation cannot be used and (A.13) no longer holds. However, (A.11) does
not hold either, since from (A.7) we see that ifµ ∼ N−1 the whole steepest descent
procedure fails.

Thus the caseµ ∼ N−1 (or less) has to be treated separately; it is a simple
modification of the earlier method. Introducingβ = µN, we rewrite the standard
integral appearing in (A.10) as

∫
∞

0
dyg̃(y)exp[N f̃ (y)],

where

f̃ (y) = ln(1 + y)− εy, g̃(y) =
yβ

y
= yβ−1. (A.14)

Applying the method of steepest descent gives, in the language of the two-step
process described earlier, (a) one value ofy∗ only: y∗

= (1 − ε)/ε, which is
only positive if ε < 1, and (b) exactly the same formula (A.11), except that the
functions f and g are replaced byf̃ and g̃, respectively. In this case, there is
obviously no analog of formula (A.13).

So we conclude that the steepest descent method may still be applied to obtain
an expression forPs(0) for largeN whenβ = µN is not large, but only in the case
ε < 1.

If we wish to calculate the mean in the case whereN is large, butβ is not large,
we find the analogous result to (A.12) to be

∫
∞

0 dyyβ exp[N f̃ (y)]∫
∞

0 dyyβ−1 exp[N f̃ (y)]
= y∗

+
1

2N

{
−2(β − 1)

y∗ f̃ (2)(y∗)
+

f̃ (3)(y∗)

[ f̃ (2)(y∗)]2

}
+ O

(
1

N2

)
,

(A.15)
where it should be remembered that this result only holds forε < 1, and thaty∗ is
now given byy∗

= (1 − ε)/ε, and not by the value used in (A.12).
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APPENDIX B

In this short appendix we indicate how the integral appearing in formula (53)
for the mean time to extinction may be evaluated for several relevant values of
β = mN/c within the linearized theory described in Section5.

The stationary distribution of the linear theory is given by (50). It is zero if
e ≤ c, which means that the population never becomes extinct and the mean time
to extinction is formally infinite. We therefore restrict ourselves to the case where
ε ≡ e/c > 1. In this case we have from (49) and (50)

P(0, t)

Ps(0)
=

(1 − y)n0(
1 − ε−1y

)n0+β
, (B.1)

wherey = exp{−(e− c)t}. Therefore from (53)

TE(n0) =
I (n0, β)

(e− c)
where I (n0, β) =

∫ 1

0

dy

y

{
1 −

(1 − y)n0(
1 − ε−1y

)n0+β

}
.

(B.2)
The remainder of the appendix concerns the evaluation ofI (n, β).

First of all, we note that

(1 − y)n(
1 − ε−1y

)n+β
=

(1 − y)n−1(
1 − ε−1y

)n−1+β

[
1 −

y(1 − ε−1)

1 − ε−1y

]
, (B.3)

and so

I (n, β) = I (n − 1, β)+
(
1 − ε−1

) ∫ 1

0
dy

(1 − y)n−1(
1 − ε−1y

)n+β
. (B.4)

Iterating (B.4) and changing variables toz = (1 − y)/(1 − ε−1y) in the integral
gives

I (n, β) = I (0, β)+

n0−1∑
n=0

1(
1 − ε−1

)β−1

∫ 1

0
dz
(
1 − ε−1z

)β−1
zn, (B.5)

where

I (0, β) =

∫ 1

0

dy

y

{
1 −

1(
1 − ε−1y

)β }. (B.6)

We are typically interested in values ofβ which are of order one (see, for example,
the values ofβ for the graphs in Fig.4, which range from 0.1 to 4, with two of
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them corresponding toβ = 1). In fact, the expression forI (n0,1) is especially
simple:

I (n0,1)= −ε−1
∫ 1

0

dy

1 − ε−1y
+

n0−1∑
n=0

1

n + 1

= ln
(
1 − ε−1

)
+ ψ(n0 + 1)+ γ, (B.7)

whereψ(x) is the logarithmic derivative of the gamma function,0(x), andγ is
Euler’s constant (Abramowitz and Stegun, 1965).

Expressions forI (n, β) for other values ofβ which are small positive integers
can also easily be found from (B.5) and (B.6). However, it is simpler to use the
following recurrence relation inβ:

I (n0, β + 1) = I (n0, β)−
ε−1(

1 − ε−1
)β ∫ 1

0
dz
(
1 − ε−1z

)β−1
zn0. (B.8)

This is proved in exactly the same way as (B.4), but starting from

(1 − y)n0(
1 − ε−1y

)n0+β
=

(1 − y)n0(
1 − ε−1y

)n0+1+β

[
1 − ε−1y

]
, (B.9)

rather than (B.3). As an example of the use of this result we see that

I (n0,2)= I (n0,1)−
ε−1(

1 − ε−1
) ∫ 1

0
dzzn0

= ln
(
1 − ε−1

)
+ ψ(n0 + 1)+ γ −

1

ε − 1

1

n0 + 1
. (B.10)

APPENDIX C

In this appendix we describe a general algorithm for performing stochastic real-
izations of spatially extended systems. Space must be included in a discrete way,
for instance, as sites in a lattice, or as different patches located at particular posi-
tions. Each spatial position in the system can be in a finite number of discrete states,
which in the particular case of interest to us here is equal to two: patches can be
either occupied or available. Transition rates between states define the dynamics.
The algorithm is based on the rejection method described byPresset al. (1992),
and allows us to give a unified picture of all the numerical simulations we have
carried out.

Consider a complexN-patch network (or alternatively a regular lattice ofN
sites). Each patch is defined by its spatial position (and other characteristics hav-
ing any influence on transition rates, for instance, patch areas), and its present state.
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Let us assume that each patch can be in any one ofSstates. The state of the system,
n(t), can be characterized by anN-vector of states:

n = (n1,n2, . . . ,nN), (C.1)

whereni = 1, . . . , S is the state of thei th patch. AnS×S transition matrix defines
transition rates among states. In general, transition rates can depend on both the
current spatial configuration of the system, and the particular patchk considered.
As a consequence, the temporal dynamics of the system is defined by a set ofN
transition matrices:

Tk(n) = (τ k
i j ), (C.2)

whereτ k
i j is the probability per unit time that thekth patch in statej changes to

statei . The diagonal elementsτ k
i i are defined to be zero.

The overview of the algorithm is as follows:

1. Calculation of the total transition rate of the system,r . This is the probability
per unit time that the system changes configuration, as a result of a transition
event occurring in any patch within the system.

2. Calculation of the expected time to the next transition. It can be shown that
the time to the next event is an exponentially distributed random variable
with expectation 1/r (Renshaw, 1991). Sample this distribution in order to
estimate when the next event will take place.

3. Rejection method. Choose a patch at random and assess whether this patch
can undergo a transition or not. If not, stochastic time is assumed not to
advance and nothing happens. If it can, the inter-event expected time cal-
culated in the previous step is accumulated and a particular transition event
takes place changing the configuration of the system.

4. Repeat again, starting from step 1.

Let us describe in detail the three main steps enumerated above.

Total transition rate. The system transition rate is computed assuming that events
at different patches are independent of each other. Thus, the probability of one
of them occurring within the system in a time intervaldt is r dt , where the total
transition rate,r , is given by

r =

N∑
k=1

S∑
j =1

τ k
jnk
(n). (C.3)

Inter-event expected time.The expected time to the next transitiont can be esti-
mated by sampling an exponential distribution with a parameterr . So,

t = − log(x)/r, (C.4)
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wherex is a uniformly distributed random variable. Thus, in this way, we are
actually sampling this distribution and estimating when the next event will take
place. Accumulating these inter-event times for every stochastic realization we are
able to correctly track the time.

Rejection method. This is the core part of the algorithm. In principle, a par-
ticular patch should not be chosen at random but according to the probability of
undergoing a transition to any other state. In general, this probability,pk, is patch-
dependent. Actually, it also depends on the particular state,nk, of that patch. Let
us write down the transition rate associated with this probability(pk = rk dt):

rk =

S∑
j =1

τ k
jnk
(n). (C.5)

Thus, we have a set ofpk probabilities defining at each step a different discrete
probability distribution. We should sample patches according to this distribution.
However, the rejection method is designed to do precisely this (Presset al., 1992).
In essence, this method requires that we perform the following rejection procedure:

1. Choose a patch at random. Let thekth patch be the randomly chosen one.
2. Compute the following ratio:

x =
rk

maxk=1,...,N(rk)
. (C.6)

3. Compare thex value to a randomly chosen number,χ , belonging to a uni-
form distribution lying between 0 and 1. Ifχ < x this patch is accepted
and undergoes a transition. If not, the patch is rejected and the rejection
procedure is repeated.

4. Once a patch is accepted, a transition is chosen to take place in that patch
according to the probabilities:

p j =
τ k

jnk
(n)

rk
; j = 1, . . . , S. (C.7)

This is carried out in the standard way. The unit interval (0, 1) is divided into
subintervals with lengthsp j . Finally, a new uniformly distributed random
number between 0 and 1 is used to decide which actual event occurs.

In the stochastic models defined throughout this paper (SIM, SEM, and SRM)
each patch has just two states:pi = 1 (occupied) andpi = 0 (available). Notice
that all three can be formulated and simulated in this way by defining the following
transition matrices:

Tk =

(
0 cρ(k) + m
e 0

)
, (C.8)
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whereρ(k) is the global occupancy, which is patch-independent in the SIM. There-
fore, the subindexk could be dropped everywhere in this case. In contrast, in the
SEM,ρ(k) is the patch-dependent local occupancy surrounding thekth site. Finally,
in the SRM both rates are patch-dependent, and the transition matrix reads:

Tk =

(
0 Ck(n)
Ek 0

)
. (C.9)

Using these definitions, equation (C.3), and the notation given throughout Sec-
tion 6, the following total transition rates are easily obtained for the various mod-
els:

rSIM = c
n1

N
n0 + m n0 + e n1, (C.10)

rSEM =

z∑
i =0

c
i

z
n0i + m n0 + e n1, (C.11)

rSRM =

N∑
i =1

(1 − pi )Ci dt + m n0 +

N∑
i =1

pi Ei . (C.12)
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